

Abstract— We propose three categories of measures and
procedures for this Workshop on Measures and Procedures for
the Evaluation of Robot Architectures and Middleware. The
categories are Programmatic, System-Engineering and
Component-Specific. Within these categories, we suggest
measures and procedures that we have identified from our
experience with the CLARAty reusable robotic software.

I. INTRODUCTION

OUR selection of measures and procedures for the evaluation
of robotic software systems has been strongly influenced by
our experience with the CLARAty system (Volpe 2001,
Nesnas 2003, CLARAty 2005, Nesnas 2006). CLARAty is
an on-going development at JPL and collaborating NASA
centers and universities with a legacy of over ten years of
development. It is a framework for reusable robotic software.
At its lowest level, CLARAty implements software
abstractions for hardware interfaces in an object-oriented
hierarchy. Upon this hardware abstraction layer, re-usable
software components are built to interface to higher levels of
control. As a result, software to implement complex behavior
and sophisticated operations is platform independent.
Examples of such capabilities include pose estimation,
navigation, locomotion and planning. In addition to
supporting multiple algorithms for each capability,
CLARAty provides adaptations to multiple robotic and rover
platforms. CLARAty is a domain-specific robotic
architecture designed with four main objectives:
1. To promote the reuse of robotic software infrastructure

across multiple research efforts
2. To promote the integration of new technologies

developed by the robotics community onto rover
platforms

3. To mature robotic capabilities through reuse and enable
independent formal validation

4. To share the development with the robotic community to
promote rapid advancement and leveraging of
capabilities

Development of the infrastructure to support these
objectives is continuing in many directions including
improved interfaces to actuators and sensors, camera
modeling and image processing, mechanism modeling,

locomotion, pose estimation, navigation and interfaces to
higher level planners.

The areas of robotics covered within the CLARAty system
include hardware interfaces, kinematics, manipulation,
mobility, estimation, control, vision, navigation & path
planning, and artificial intelligence planning.

II. CATEGORIES OF MEASURES AND PROCEDURES

We have taken a very general interpretation of the word
measure in the context of this discussion. Measure, in this
paper, includes any method of characterizing a robot
software or middleware system. In many of our cases,
measures are descriptive rather than quantitative. For these
cases, where possible, we have attempted to be more precise
and objective by listing measurements as a selection from a
list of choices. Please see item 1 in Table I for an example.

It is useful to categorize measures and procedures for
robot software architectures in order to characterize them.
While there are alternative, possibly better, categories, we
have selected the following three: Programmatic, System-
Engineering and Component-Specific. Our categorization is
organization-centric. Programmatic measures are mainly of
interest to management, system-engineering measures are of
interest to the system engineer and the component-specific
measures are of interest to the developers of the component.
This classification is adequate for our discussion because it
helps organize our measures and assigns responsibility for
them to a person in the development team hierarchy. There
are other possible categorizations. Fenton (2000) lists
Products, Processes and Resources as an approach used for
categorizing software measures. Structural, Code Metrics
and Hybrid are the categories used by Kafura(1985). A
potential outcome from this Workshop, in addition to
identifying measures and procedures, could be a
categorization that the community agrees on.

Measures and Procedures: Lessons Learned from the CLARAty
Development at NASA/JPL

Hari D. Nayar and Issa A.D. Nesnas
Jet Propulsion Laboratory

4800 Oak Grove Drive, M/S 82-105
Pasadena CA 91001, USA

Hari.D.Nayar@jpl.nasa.gov, Issa.A.Nesnas@jpl.nasa.gov

TABLE 1A
PROGRAMMATIC MEASURES AND PROCEDURES: ARCHITECTURE

Meas./Proc. Description Measure
Criteria

1 Architectural
Approach

A number of architectural approaches are possible including:
1. Abstract Model Approach: uses abstractions as first order elements in the

architecture. Uses a hierarchy of abstract and concrete models to represent
logical and physical devices and capabilities. Uses technologies from
object-oriented design, component design, and generic programming. (add
CLARAty example, Control Shell, OROCOS)

2. Data Centric Approach: uses data as first order elements in the design.
Uses public and subscribe mechanisms in a data distributed system (add
reference) (add DDS example).

3. Service-Oriented Approach: uses services as first order elements.
Services are language independent, computationally distributed, and
stateless (state and intent) services as first order elements in the
architecture. For example, in MS Robotics Studio (reference) state and
intent come into a component through an XML document which process
and generates an XML output document.

4. Other Approach: approach does not fall within above categories.
This item may, alternatively, be grouped in the System engineering category.

Multiple
choice from
one of the
options

2 Programming
Paradigms and
Languages

Two primary programming paradigms have been used in robotics: (these can also
go into the Architectural approach)

1. Procedural programming paradigm: This paradigm uses program
logic to define the sequence of robot actions. This paradigm is most
prevalent within the robotics community.

2. Declarative programming paradigm: This paradigm defines the robot
actions using pre- and post-conditions, and then uses a search engine to
generate the program logic. This paradigm is most prevalent within the
Artificial Intelligence robotic community (e.g. CASPER 2007).

There is also the choice of the programming language based on the selected
paradigm. Within procedural languages there are functional programming
languages like C or Fortran and object-oriented programming languages like C++
or Java. With the declarative programming paradigm, most languages are custom
ones developed at research labs.

Multiple
choice.
Language
choice

3 Architectural
Heterogeneity

A measure of the heterogeneity of the architectural paradigms and programming
languages that are used:

1. Low Heterogeneity: one dominant architectural paradigm and a single
programming language.

2. High Heterogeneity: multiple architectural paradigms and multiple
programming languages.

Multiple
choice

4 Deployment
Architecture

There are a number of parameters that characterize the deployment architecture of
a robot software system. These include:

1. Computational architecture
a. Single centralized node
b. Distributed homogeneous or heterogeneous nodes

2. Operating system type:
a. Soft real-time
b. Hard real-time

3. Type and scale of processors:
a. Integer-based processor vs. processors with floating point support
b. X86 family, PowerPC family, SPARC family, etc.

4. Type of compilers to be supported

Multiple
choice from
one of the
possible
combinations
of these
options.

TABLE 1B
PROGRAMMATIC MEASURES AND PROCEDURES: SOFTWARE DEVELOPMENT

Meas./Proc. Description Measure
Criteria

5 Development
Environment

There are a number of integrated development environments (IDE) available for
software development. Examples are Eclipse and Visual Studio. Developers may,
alternatively, use other home-grown environments by combining components
needed for development. IDEs can have an affect quality and productivity of the
software development and testing process.

Multiple
choice.

6 Code
Organization

Code organization describes software system decomposition to modular units.
There are two levels of code organization. The first is the organizational structure
within the execution environment to facilitate modularity, encapsulation and code
re-use. This is discussed in greater detail under Functional decomposition under
System-Engineering in Table II. The second level is the organization within the
development environment. Options include decomposition by function, by
developer and other source. The organization may be in a flat or hierarchical
structure. There are probably as many approaches for organization of robot
software as there are implementations. Choices made in some of the items listed
above like architectural approach, deployment architecture and one or more
languages used will influence the organization of the software.

Descriptive
measure

7 Coding
Standards

Coding standards define how the software will be written. This is useful because
it helps unify the format of the written software and facilitates sharing software
among developers. Standards (for example on use of exception handling or
function return types) also help maintain a uniform level of quality throughout the
code. The ANSI ISO/IEC14882 standard [ANSI 1988] is an example standard
that may form the basis of a team’s coding standard.

Reference to
ANSI or
other
standard.

8 Documentation Documentation of software is an extremely important element of the software
production process. It is a means of communication within the development team,
for users and an information repository to capture the development effort for
future use and maintenance (Sommerville, 2002). There are many categories of
documentation ranging from high-level user documentation, technical
publications of algorithms, to low-level code comment documentation.
Consequently, there can be many measures to quantify documentation. These
include percentage of lines of documentation in source code, effectiveness of the
documentation, maintenance and correctness of documentation especially
through software revisions, number of journal or conference publications and so
on. Automated documentation procedures can be incorporated into the software
development with little effort, for example, with tools like Doxygen.

Multiple
measures (see
description).

9 Developer-
Coordination
Procedure

Procedures for coordination of multiple and possibly disparate developer teams
are critical for successful integration, testing and deployment of robotics
software. Developer coordination procedures include: developer training,
meetings and tele-conferences, coordinating exchange visits with software
deliveries, maintaining mailing lists, announcing software commits and releases,
and maintaining a website for documenting development procedures, status, and
system information.

TABLE 1C
PROGRAMMATIC MEASURES AND PROCEDURES: SOFTWARE QUALITY

Meas./Proc. Description Measure Criteria
10 Coherence Although hard to quantify, we suggest this measure to indicate the

importance of developing software that adheres to, and efficiently
embodies its design philosophy. An example, taken from the CLARAty
development, is the attempted design of the class structure at the abstract
motor level to be also reflected at the abstract locomotor level. This
measure attempts to capture the consistencies (or inconsistencies) in design
patterns between architectural elements throughout system. A suggested
quantification of this measure is to enumerate the instances where the
design philosophy is not followed.

Number of violations
of design philosophy.

11 Code Size The number of source lines of code (SLOC) has been proposed as a
measure of the size of a software package. Physical SLOC counts the total
number of lines in the software while logical SLOC is the number of
statements in the package.

Physical and Logical
SLOC.

12 Complexity There are many possible metrics that can capture the complexity in a
software package. All the following increase the complexity in software:

1. Number of processor nodes
2. Combinations of different processor types (for example, PPC and

x86 vs. only PPC or only x86, or x86 with embedded micro
processors that you write firmware for),

3. Use of more than one programming language (linear or non linear)
4. Variety and content of information in an algorithm
5. Number of algorithms in the system,
6. Number of sources of algorithms in a system (i.e. number of

developers that are collocated and number of distributed
developers)

7. Choice of complex vs. simple algorithmic solutions (for example,
closed form vs. numeric solutions for kinematics or dynamics)

8. Number of sensing modalities
9. Amount of effort that has gone into the development (measured as

the number of work hours).
10. The Cyclomatic number (McCabe 1976).

Multiple measures (see
description).

13 Software
Validation and
Verification
Procedures

To maintain the quality of new components integrated in to a software
system, procedures for design review, implementation process, validation,
verification, and maintenance are needed. These procedures help ensure
that the component complies with the system design standards, meet the
desired interface requirements, are implemented correctly and adhere to the
development policies.

Matrix checklist for to
ensure all proper
procedures are
followed

14 Regression
Testing
Procedure

Measures to evaluate regression testing include indicating if an automated
process exists, enumeration of unit test coverage, whether it is multi-target,
test frequency, consistency of the implementation of unit tests, consistent
report of results, and memory leak checking.

Multiple measures (see
description).

We list metrics and procedures from our experience with

the development of the CLARAty robot software
architecture. Our list is not exhaustive – there will be items
that overlap and are missing in comparison to items from
other groups participating in this Workshop.

The reader will notice that there is overlap among some
items listed. For example, a measure of software system
complexity has some overlap with the deployment

architecture (centralized single processing computing versus
distributed multiple-processor computing). We will not
attempt to identify or quantify these overlaps in this paper.

A. Programmatic

Programmatic measures and procedures are items of interest
to the manager, systems engineer, or end user of the robotic
software architecture. They provide: 1) a common language
for describing the overall robot software system for
comparison against other software systems, 2) quantities to

TABLE IIA
SYSTEM-ENGINEERING MEASURES AND PROCEDURES

Meas./Proc. Description Measure
Criteria

1 Functional
Decomposition

The functional decomposition of robotics software can be done in many
ways. The architectural design will have a strong influence on the
decomposition of the software. Two decompositions at opposite ends of the
spectrum that reflect different architectural styles are:

1. A flat-structure with groupings of signals, processing blocks,
control models, and finite-state machine models,

2. An object-oriented hierarchical models with utilities and hardware
abstraction objects at the lowest level and building up to high-level
user interfaces at the top-level.

Descriptive
measure.

2 Access Levels This measure will answer the question: “Does the architecture allow for
access at different levels of granularity, and if so, how many and at what
levels?” Possible access levels include at the digital I/O, motor, motor group,
locomotor, navigator or robot levels. This is useful because it tells us the
levels at which one can interface to hardware and the level at which reuse
can occur without the overhead of unnecessary software. Does the
architecture provide an API for a motor, camera, camera group, IMU, digital
I/O, etc, navigator, locomotor, etc.

Number of
access levels,
descriptive
measure of
levels.

3 Sub-system
Coverage

Robotics includes technology from many different disciplines. Furthermore,
the technology itself is expanding with the rapid development of new
innovations. No robotics software system can include all possible
technologies. However, common sub-systems that are used in many robotics
software systems can be identified. These include (and may be further sub-
divided): vision, locomotion, manipulation (serial, parallel, hybrid), pose
estimation, navigation, trajectory generation, motor control, I/O, and math
utilities. A measure we suggest is to draw up a categorization of these sub-
systems (it may have a hierarchical structure) and indicate the coverage of a
software system over the structure.

Sub-system
coverage
percentage.

4 Separation of
physical and the
logical
hierarchy

The effort needed to integrate a new low-level hardware device into a robot
software system without disrupting its high-level software is a useful
measure of how well-designed and adaptable the software is. Another
measure that could capture a similar capability is the number of hardware
devices performing similar functions but with different interfaces that have
been implemented in the software system. For example, for motor control,
there are a variety of hardware-dependent motor control architectures based
on centralized, distributed, or other configurations. In addition, motor
control may be performed on a CPU, with specialized motor control chips
(LM629, HCTL1100, etc.) or COTS boards. A clean separation between
classes and drivers for a particular hardware device and a generic API layer
facilitates easy incorporation of new devices without changing the existing
software interfaces.

Effort to
implement new
hardware
device.
Number of
different device
interfaces
implemented.

measure the quality and efficiency of the overall software
development approach, and 3) procedures to manage and
improve the quality of the software development process.
Many of these items are relevant for any large software
system. Some are particularly relevant to robot software
systems. We have grouped these measures and procedures
into three categories related to: (1) system architecture, (2)
software development, and (3) software quality. Table IA –
IC describe items in each of these categories.

B. System Engineering

In the System-Engineering category are measures and
procedures of interest to the systems engineer, robot software
developer, or the expert (or power) user. These items are
metrics and procedures related to technical capabilities, to
sub-system design, interfaces between sub-systems or
approaches implemented. Items in this category are

TABLE IIB
SYSTEM-ENGINEERING MEASURES AND PROCEDURES

Meas./Proc. Description Measure
Criteria

5 Interface
Stabilization

Interfaces between components within the robot software system can be
designed to minimize changes needed on the other side of the interface
when software on one side is changed. This is done in CLARAty with the
use of complex data types. For example, the Camera class uses the
Camera_Image data type for its argument in the acquire function rather
than using raw data types such as (int * data, int nrows, int ncols). Using
raw data types makes implicit assumptions about the type of image and its
pixel content. It will be useful to have a measure to capture how stable the
interfaces are in the software. One possibility for this measure is the
number of API changes for every revision. Another is the conciseness
(number of arguments used) and ease of use of the APIs.

Number of API
changes per
revision.
Conciseness and
ease of use of
the APIs.

6 State Management The following questions can help assess state management in the software:
1. Is state dealt with in a consistent manner throughout the system?
2. Is state logging dealt with in a consistent way?
3. Does the system have mechanisms to synchronize state updates?
4. Does the system provide mechanisms to update different states at

different rates?

Yes/No answers
to listed
questions.

7 Uncertainty
Representation

Stochastic representation of information is useful in robotic systems
because there is often much uncertainty in the models of the environments
that robots operate in. The following two questions give basic measures of
how well a system addresses this capability:

1. Does the system have a means to represent uncertainty?
2. Does it support and interoperate more than one type?

Yes/No answers
to listed
questions.

8 Shared resource
handling

Some resources in robotics systems are shared among two or more
processes. Examples include memory, hardware devices, power, hardware
busses, and computational time. We suggest these questions as a method
of measuring how well a software handles shared resources:

1. Does the system support multiple clients accessing a shared
resource?

2. Does the system support reasoning about shared resources (e.g.
queries about current resource state)?

3. Does it support queries on planned usage (how much resource
usage do motors in an arm use for a given trajectory)?

Yes/No answers
to listed
questions.

especially important because robotic software development
is a highly multi-disciplinary field and most applications
require the integration of sub-systems from multiple
disciplines and developer teams. Detail descriptions of items
in this category are listed on Table IIA – IIB.

C. Component-Specific

Component-Specific measures and procedures related to
particular implementations of capability, within a specialty
or field of robotics, are included in this category. These
measures and procedures are applied to capabilities
implemented within a sub-system and are of interest to the
sub-system developers and system-engineers. There are some
general measures and procedures that apply for software in
this category. An example of a measure that is general is the
computational time for an algorithm. This measure may be
applied to an inverse kinematics or a stereo-vision algorithm.

However, there are many more measures and procedures that
are unique for a particular field of robotics. An example is
the error between the results of a pose estimation algorithm
and ground truth. This measure is only relevant for a pose
estimation algorithm. Furthermore, it is only measurable
under a particular set of laboratory conditions. Some
measures in this category are listed on Table IIIA – IIIB.

III. CONCLUSION

Robot software systems are generally very complex. There
are some areas within robotics that are easy to standardize
and be able to quantify. However, many areas of robotics are
difficult to generalize and precisely quantify. Despite the
challenge, developing quantifiable measures and procedures
for robot software systems will lead to a number of benefits
for the robotics community. These include improved

TABLE IIIA
COMPONENT-SPECIFIC MEASURES AND PROCEDURES

Meas./Proc. Description Measure
Criteria

1 Generality There is a trade-off in modeling effort and computational cost between
algorithmic generality and customization for particular applications. A
simple example is the inverse kinematics of a serial-link robot arm. We
can write a general-purpose algorithm to numerically solve for the inverse
kinematics of all serial-link robot arms or write an algebraic solver that
solves for particular configurations of robot arms. In robotics, generality
is often relative – an algorithm that handles serial and parallel robot arms
is more general than one for only serial arms. And an algorithm for hybrid
serial and parallel arms would have a higher generality metric. Handling
multiple end effectors simultaneously would add even more generality,
and so on. For specific areas of robotics, we can state the level of
generality with respect to the types of systems it can handle and the
restrictions (assumptions) for particular algorithms. It should be noted
that more general is not necessarily better because it will be at the cost of
computational cost and development effort.

Level of
generality –
specific for
each area of
robotics.

2 Numerical
Precision/Accuracy

When comparing alternative approaches that perform a similar function,
for example a dynamics simulation, it’s possible to numerically measure
output and compare differences. In some cases, say in pose estimation or
stereovision, it’s possible to compare estimation results against ground
truth. For measurement purposes, a reference example may be developed
to compare alternative approaches.

Field-specific
numerical
result for a
reference
example.

3 Computational
Cost/Efficiency

Computational cost is a measure that can be quantified for particular
implementations of algorithms on particular platforms.

Computational
cost

4 Actively
Maintained

Actively maintained components are modules in the software that
continue to be updated. Updates improve the software, adapt it for more
platforms, increase computational speed, and so on. There is a cost,
however, in maintenance (see below) of active components.

Is a component
frozen or
active.

development processes and resulting quality, methods for
predicting schedules and identifying risks, and metrics for
comparing alternative approaches.

ACKNOWLEDGEMENT

This work was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

REFERENCES

[1] ANSI International standard ISO/IEC 14882, International Standard
for C++, 1998.

[2] CASPER (2007), http://casper.jpl.nasa.gov
[3] CLARAty (2007), http://claraty.jpl.nasa.gov

[4] Fenton, N. E.& Neil, M., (2000) Software metrics: roadmap,
Proceedings of the Conference on The Future of Software
Engineering, p.357-370, June 04-11, 2000, Limerick, Ireland.

[5] Kafura, D., (1985) A survey of software metrics, Proceedings of the
1985 ACM annual conference on The range of computing : mid-80's
perspective: mid-80's perspective, p.502-506, October 1985, Denver,
Colorado, United States.

[6] McCabe (1976) Complexity Measure, IEEE Transacions on Software
Engineering, Volume 2, No 4, pp 308-320, December 1976.

[7] Nesnas, I.A., (2006) chapter in the Software Engineering for
Experimental Robotics, Springer Tracts on Advanced Robotics,
edited by Davide Brugali, 2006.

[8] Nesnas, I.A., Wright, A., Bajracharya, M., Simmons, R. & Estlin, T.
(2003). CLARAty and Challenges of Developing Interoperable
Robotic Software, International Conference on Intelligent Robots and
Systems (IROS), Nevada, October 2003.

[9] Sommerville, I., Software Documentation, in Software Engineering,
Vol 2: The Supporting Processes. R. H. Thayer and M. I. Christensen
(eds), Wiley-IEEE Press.[Book chapter], 2002.

[10] Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D., Petras, R. & Das, H.
(2001). The CLARAty Architecture for Robotic Autonomy,
Proceedings of the 2001 IEEE Aerospace Conference, Big Sky
Montana, March 2001.

TABLE IIIB
COMPONENT-SPECIFIC MEASURES AND PROCEDURES

Meas./Proc. Description Measure
Criteria

5 Level-of-
integration

The CLARAty software has developed four levels to quantify the level of
integration of a software module. These are:

I. Has been deposited into the CLARAty software repository as a
stand-alone package, with test software and user documentation.

II. Interacts with other components in CLARAty, runs on a robot
platform but does not use CLARAty APIs.

III. Runs on all CLARAty robot platforms, has no 3rd party
undocumented dependencies and meets CLARAty API standard

IV. Reviewed by development team, meets CLARAty conventions,
uses all relevant CLARAty classes, provides access to internal data
and is maintained with other CLARAty software.

Note that internally developed modules often start at Level II to III while
modules delivered from collaborators will often start at Level I.

Level as
defined.

6 Validation and
Verification

Defining a validation procedure for an algorithm helps ensure that it
meets the requirements of an application. Some algorithms are easier to
validate than others. For example, we can determine if a matrix inverse
algorithm is correct but it is harder to automatically validate a locomotor
move command.

Component
specific
measure.

7 Management
Overhead

There are a number of factors that affect how easy it is to maintain a
software component. Maintenance is easier if it is well integrated, and
has automated validation and verification procedures.

Combination of
previous three
measures.

8 Component-
specific measures
and procedures

There are many field-specific measures and procedures that may be
relevant for particular fields but not for others.

Field and
algorithm
specific.

